Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking.
نویسندگان
چکیده
Optical coherence tomography (OCT)-based optical microangiography (OMAG) is a high-resolution, noninvasive imaging technique capable of providing three-dimensional in vivo blood flow visualization within microcirculatory tissue beds in the eye. Although the technique has demonstrated early clinical utility by imaging diseased eyes, its limited field of view (FOV) and the sensitivity to eye motion remain the two biggest challenges for the widespread clinical use of the technology. Here, we report the results of retinal OMAG imaging obtained from a Zeiss Cirrus 5000 spectral domain OCT system with motion tracking capability achieved by a line scan ophthalmoscope (LSO). The tracking LSO is able to guide the OCT scanning, which minimizes the effect of eye motion in the final results. We show that the tracking can effectively correct the motion artifacts and remove the discontinuities and distortions of vascular appearance due to microsaccade, leading to almost motion-free OMAG angiograms with good repeatability and reliability. Due to the robustness of the tracking LSO, we also show the montage scan protocol to provide unprecedented wide field retinal OMAG angiograms. We experimentally demonstrate a 12 x 16 mm² retinal OMAG angiogram acquired from a volunteer, which is the widest FOV retinal vasculature imaging up to now in the community.
منابع مشابه
Wide-field optical coherence tomography based microangiography for retinal imaging
Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time...
متن کاملHigh-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography.
We present high-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography (OMAG) technology. Based on spatial frequency analysis, OMAG is capable of visualizing the vascular perfusion map down to capillary-level resolution. An OMAG system operating at 840 nm is used with an A-scan rate of 27,000 Hz, axial resolution of 8 mum, and sensitivity of 98 dB. ...
متن کاملOptical coherence tomography based microangiography as a non-invasive imaging modality for early detection of choroido-neovascular membrane in choroidal rupture
INTRODUCTION To evaluate and identify early microvascular changes in patient with choroidal rupture using optical coherence tomography (OCT) based microangiography (OMAG). CASE DESCRIPTION One patient (one eye) with confirmed diagnosis of choroidal rupture after sustained ocular blunt trauma underwent OMAG imaging. OMAG was performed by Zeiss spectral domain OCT-angiography prototype using a ...
متن کاملPupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-...
متن کاملScalable wide-field optical coherence tomography-based angiography for in vivo imaging applications
Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2015